www.klinickafarmakologie.cz / Klin Farmakol Farm. 2024;38(4):156-160 / KLINICKÁ FARMAKOLOGIE A FARMACIE 159 PŘEHLEDOVÉ ČLÁNKY Molekulární mechanismy a farmakologie kanabinoidů: od teorie k praxi a nezaslepenému nebo nerandomizovanému designu studie (49, 50). Problém je, že žádné studie nepoužívají standardizovanou dávku nebo způsob podávání a studované populace se liší podle etiologie bolesti. Publikované studie hodnotící konopí nebo kanabinoidy pro léčbu posttraumatické stresové poruchy (PTSD) se zaměřily na různé specifické populace (veterány, nápravné populace, ambulantní pacienty s PTSD) s použitím THC v dávce 3 až 5mg. Studie zjistily zlepšení nočních můr a některé prokázaly zlepšení globálních výsledků PTSD, a symptomů onemocnění (53–55). Syntetická THC (dronabinol, nabilon) jsou schválena americkým FDA v léčbě nevolnosti a zvracení vyvolaných chemoterapií a používá se k tomuto účelu již desítky let. CBD byl schválen k léčbě vzácných forem dětské epilepsie, jako je syndrom Dravetové a LennoxGastautův syndrom (56, 57). Konopí mohou užívat jednotlivci, kteří hledají paliativní léčbu. Mezi jejich příznaky často patří bolest, nevolnost, nespavost, neklid nebo noční pocení. Dostupné studie jsou však omezené, používají řadu produktů a uvádějí různé výsledky (56). V jednom doporučení se léčebné konopí v prostředí paliativní péče doporučuje pouze v případě, že jiné možnosti léčby založené na důkazech jsou neúčinné nebo nedostupné (57). Existují jen malé nebo žádné důkazy na podporu užívání konopí pro zvládání kachexie. Klinicky se konopí používá především u syndromu chřadnutí u AIDS nebo kachexie spojené s rakovinou, ale důkazy k tomuto použití neexistují. V metaanalýze účinnosti konopí u kachexie nebyla při léčbě konopím pozorována žádná změna chuti k jídlu, kvality života ani nárůstu hmotnosti (58). LITERATURA 1. Clarke RC, Merlin MD. Cannabis: Evolution and Ethnobotany [Internet]. 1st ed. University of California Press; 2013 cit. 25-11-2024. Available from: https://www.jstor.org/stable/10.1525/j.ctt3fh2f8. 2. Okazaki H, Kobayashi M, Momohara A, et al. Early Holocene coastal environment change inferred from deposits at Okinoshima archeological site, Boso Peninsula, central Japan. Quaternary International. 2011;230(1):87-94. 3. Pisanti S, Bifulco M. Medical Cannabis: A plurimillennial history of an evergreen. J Cell Physiol. 2019;234(6):8342-8351. 4. WHO review of cannabis and cannabis-related substances [Internet]. cit. 25-11-2024. Available from: https://www. who.int/teams/health-product-and-policy-standards/controlled-substances/who-review-of-cannabis-and-cannabis- -related-substances. 5. Wakeford AGP, Wetzell BB, Pomfrey RL, et al. The effects of cannabidiol (CBD) on Δ9-tetrahydrocannabinol (THC) self-administration in male and female Long-Evans rats. Exp Clin Psychopharmacol. 2017;25(4):242-248. 6. Zangen A, Solinas M, Ikemoto S, Goldberg SR, Wise RA. Two Brain Sites for Cannabinoid Reward. J Neurosci. 2006;26(18):4901-4907. 7. Mendizábal V, Zimmer A, Maldonado R. Involvement of kappa/dynorphin system in WIN 55,212-2 self-administration in mice. Neuropsychopharmacology. 2006;31(9):1957-1966. 8. John WS, Martin TJ, Nader MA. Behavioral Determinants of Cannabinoid Self-Administration in Old World Monkeys. Neuropsychopharmacology. 2017;42(7):1522-1530. 9. Hempel BJ, Wakeford AGP, Clasen MM, et al. Delta-9-tetrahydrocannabinol (THC) history fails to affect THC’s ability to induce place preferences in rats. Pharmacology Biochemistry and Behavior. 2016;144:1-6. 10. Tanda G. Preclinical studies on the reinforcing effects of cannabinoids. A tribute to the scientific research of Dr. Steve Goldberg. Psychopharmacology (Berl). 2016;233(10):1845-1866. 11. ElSohly MA, Radwan MM, Gul W, et al. Phytochemistry of Cannabis sativa L. In: Kinghorn AD, Falk H, Gibbons S, Kobayashi J, editors. Phytocannabinoids: Unraveling the Complex Chemistry and Pharmacology of Cannabis sativa [Internet]. Cham: Springer International Publishing; 2017. cit. 25-11-2024. p. 1-36. Available from: https://doi. org/10.1007/978-3-319-45541-9_1. 12. Flores-Sanchez IJ, Verpoorte R. Secondary metabolism in cannabis. Phytochem Rev. 2008;7(3):615-639. 13. Sugiura T, Kondo S, Sukagawa A, et al. 2-Arachidonoylgylcerol: A Possible Endogenous Cannabinoid Receptor Ligand in Brain. Biochemical and Biophysical Research Communications. 1995;215(1):89-97. 14. Wiley JL, Marusich JA, Thomas BF. Combination Chemistry: Structure-Activity Relationships of Novel Psychoactive Cannabinoids. Curr Top Behav Neurosci. 2017;32:231-248. 15. Gerostamoulos D, Drummer OH, Woodford NW. Deaths linked to synthetic cannabinoids. Forensic Sci Med Pathol. 2015;11(3):478-478. 16. Grim TW, Morales AJ, Gonek MM, et al. Stratification of Cannabinoid 1 Receptor (CB1R) Agonist Efficacy: Manipulation of CB1R Density through Use of Transgenic Mice Reveals Congruence between In Vivo and In Vitro Assays. J Pharmacol Exp Ther. 2016;359(2):329-339. 17. Blankman JL, Simon GM, Cravatt BF. A comprehensive profile of brain enzymes that hydrolyze the endocannabinoid 2-arachidonoylglycerol. Chem Biol. 2007;14(12):1347-1356. 18. Schurman LD, Lu D, Kendall DA, et al. Molecular Mechanism and Cannabinoid Pharmacology. Handb Exp Pharmacol. 2020;258:323-353. 19. Pertwee RG. Endocannabinoids and Their Pharmacological Actions. Handb Exp Pharmacol. 2015;231:1-37. 20. Buckley NE, McCoy KL, Mezey E, et al. Immunomodulation by cannabinoids is absent in mice deficient for the cannabinoid CB(2) receptor. Eur J Pharmacol. 2000;396(2-3):141-149. 21. Howlett AC, Johnson MR, Melvin LS, et al. Nonclassical cannabinoid analgetics inhibit adenylate cyclase: development of a cannabinoid receptor model. Mol Pharmacol. 1988;33(3):297-302. 22. Houston DB, Howlett AC. Solubilization of the cannabinoid receptor from rat brain and its functional interaction with guanine nucleotide-binding proteins. Mol Pharmacol. 1993;43(1):17-22. 23. Mukhopadhyay S, Howlett AC. Chemically distinct ligands promote differential CB1 cannabinoid receptor-Gi protein interactions. Mol Pharmacol. 2005;67(6):2016-2024. 24. Lu HC, Mackie K. An Introduction to the Endogenous Cannabinoid System. Biol Psychiatry. 2016;79(7):516-525. 25. Maccarrone M, Guzmán M, Mackie K, et al. Programming of neural cells by (endo)cannabinoids: from physiological rules to emerging therapies. Nat Rev Neurosci. 2014;15(12):786-801. 26. Araque A, Castillo PE, Manzoni OJ, et al. Synaptic functions of endocannabinoid signaling in health and disease. Neuropharmacology. 2017;124:13-24. 27. Chen X, Zheng C, Qian J, et al. Involvement of β-arrestin-2 and clathrin in agonist-mediated internalization of the human cannabinoid CB2 receptor. Curr Mol Pharmacol. 2014;7(1):67-80. 28. Nogueras-Ortiz C, Yudowski GA. The Multiple Waves of Cannabinoid 1 Receptor Signaling. Mol Pharmacol. 2016;90(5):620-626. 29. Mahavadi S, Sriwai W, Huang J, et al. Inhibitory signaling by CB1 receptors in smooth muscle mediated by GRK5/β- -arrestin activation of ERK1/2 and Src kinase. Am J Physiol Gastrointest Liver Physiol. 2014;306(6):G535-545. 30. Puighermanal E, Marsicano G, Busquets-Garcia A, et al. Cannabinoid modulation of hippocampal long-term memory is mediated by mTOR signaling. Nat Neurosci. 2009;12(9):1152-1158. 31. Bénard G, Massa F, Puente N, et al. Mitochondrial CB₁ receptors regulate neuronal energy metabolism. Nat Neurosci. 2012;15(4):558-564. 32. Oliveira da Cruz JF, Robin LM, Drago F, et al. Astroglial type1 cannabinoid receptor (CB1): A new player in the tripartite synapse. Neuroscience. 2016;323:35-42. 33. Ilyasov AA, Milligan CE, Pharr EP, et al. The Endocannabinoid System and Oligodendrocytes in Health and Disease. Front Neurosci. 2018;12:733. 34. Galiègue S, Mary S, Marchand J, et al. Expression of central and peripheral cannabinoid receptors in human immune tissues and leukocyte subpopulations. Eur J Biochem. 1995;232(1):54-61. 35. Pacher P, Bátkai S, Kunos G. The endocannabinoid system as an emerging target of pharmacotherapy. Pharmacol Rev. 2006;58(3):389-462. 36. Cridge BJ, Rosengren RJ. Critical appraisal of the potential use of cannabinoids in cancer management. Cancer Manag Res. 2013;5:301-313. 37. Laprairie RB, Bagher AM, Kelly MEM, et al. Cannabidiol is a negative allosteric modulator of the cannabinoid CB1 receptor. Br J Pharmacol. 2015;172(20):4790-4805. 38. Slivicki RA, Xu Z, Kulkarni PM, et al. Positive Allosteric Modulation of Cannabinoid Receptor Type 1 Suppresses Pathological Pain Without Producing Tolerance or Dependence. Biol Psychiatry. 2018;84(10):722-733. 39. Munro S, Thomas KL, Abu-Shaar M. Molecular characterization of a peripheral receptor for cannabinoids. Nature. 1993;365(6441):61-65. 40. Soethoudt M, Grether U, Fingerle J, et al. Cannabinoid CB2 receptor ligand profiling reveals biased signalling and off-target activity. Nat Commun. 2017;8:13958. 41. Aghazadeh Tabrizi M, Baraldi PG, Borea PA, et al. Medicinal Chemistry, Pharmacology, and Potential Therapeutic Benefits of Cannabinoid CB2 Receptor Agonists. Chem Rev. 2016;116(2):519-560. 42. Mackie K. Mechanisms of CB1 receptor signaling: endocannabinoid modulation of synaptic strength. Int J Obes (Lond). 2006;30 Suppl 1:S19-23. 43. Kondo S, Kondo H, Nakane S, et al. 2-Arachidonoylglycerol, an endogenous cannabinoid receptor agonist: identification as one of the major species of monoacylglycerols in various rat tissues, and evidence for its generation through CA2+-dependent and -independent mechanisms. FEBS Lett. 1998;429(2):152-156. 44. Vujanovic V, Korber DR, Vujanovic S, et al. Scientific Prospects for Cannabis-Microbiome Research to Ensure Quality and Safety of Products. Microorganisms. 2020;8(2):290. 45. Dryburgh LM, Bolan NS, Grof CPL, et al. Cannabis contaminants: sources, distribution, human toxicity and phar-
RkJQdWJsaXNoZXIy NDA4Mjc=