Klinická farmakologie a farmacie – 1/2025

KLINICKÁ FARMAKOLOGIE A FARMACIE / Klin Farmakol Farm. 2025;39(1):22-33 / www.klinickafarmakologie.cz 32 HLAVNÍ TÉMA Farmakokinetické lékové interakce přímo působících perorálních antikoagulancií 10. Mikkaichi T, Yoshigae Y, Masumoto H, et al. Edoxaban transport via P-glycoprotein is a key factor for the drug‘s disposition. Drug Metab Dispos. 2014;42(4):520-528. 11. Gnoth MJ, Buetehorn U, Muenster U, et al. In vitro and in vivo P-glycoprotein transport characteristics of rivaroxaban. J Pharmacol Exp Ther. 2011;338(1):372-380. 12. Jacqueroux E, Mercier C, Margelidon-Cozzolino V, et al. In vitro assessment of P-gp and BCRP transporter-mediated drug-drug interactions of riociguat with direct oral anticoagulants. Fundam Clin Pharmacol. 2020;34(1):109-119. 13. Gong IY, Mansell SE, Kim RB. Absence of both MDR1 (ABCB1) and breast cancer resistance protein (ABCG2) transporters significantly alters rivaroxaban disposition and central nervous system entry. Basic Clin Pharmacol Toxicol. 2013;112(3):164-170. 14. Sodhi JK, Liu S, Benet LZ. Intestinal efflux transporters P-gp and BCRP are not clinically relevant in apixaban disposition. Pharm Res. 2020;37(10):208. 15. Shen H, Yao M, Sinz M, et al. Renal excretion of dabigatran: the potential role of multidrug and toxin extrusion (MATE) proteins. Mol Pharm. 2019;16(9):4065-4076. 16. Kou W, Sodhi JK, Wu X, Benet LZ. Investigating intestinal transporter involvement in rivaroxaban disposition through examination of changes in absorption. Pharm Res. 2021;38(5):795-801. 17. Xu R, Liu W, Ge W, et al. Physiologically-based pharmacokinetic pharmacodynamic parent-metabolite model of edoxaban to predict drug-drug-disease interactions: M4 contribution. CPT Pharmacometrics Syst Pharmacol. 2023;12(8):103-106. 18. Ferri N, Colombo E, Tenconi M, et al. Drug-drug interactions of direct oral anticoagulants (DOACs): from pharmacological to clinical practice. Pharmaceutics. 2022;14(6):1120. 19. Corsini A, Ferri N, Proietti M, Boriani G. Edoxaban and the issue of drug-drug interactions: from pharmacology to clinical practice. Drugs. 2020;80(11):1065-1083. 20. Bashir B, Stickle DF, Chervoneva I, Kraft W. Drug-drug interaction study of apixaban with cyclosporine and tacrolimus in healthy volunteers. Clin Transl Sci. 2018;11(6):590-596. 21. Mansell H, Shoker A, Alcorn J, et al. Pharmacokinetics of apixaban and tacrolimus or cyclosporine in kidney and lung transplant recipients. Clin Transl Sci. 2022;15(7):1687-1697. 22. Xia CQ, Liu N, Miwa GT, Gan LS. Interactions of cyclosporin A with breast cancer resistance protein. Drug Metab Dispos. 2007;35(4):576-582. 23. Sugimoto H, Matsumoto S, Tachibana M, et al. Establishment of in vitro P-glycoprotein inhibition assay and its exclusion criteria to assess the risk of drug–drug interaction at the drug discovery stage. J Pharm Sci. 2011;100(9):4013-4023. 24. Patil AG, D‘Souza R, Dixit N, Damre A. Validation of quinidine as a probe substrate for the in vitro P-gp inhibition assay in Caco-2 cell monolayer. Eur J Drug Metab Pharmacokinet. 2011;36(3):115-119. 25. Lee CA, Zhang L, Han Y, et al. Breast cancer resistance protein (ABCG2) in clinical pharmacokinetics and drug interactions: practical recommendations for clinical victim and perpetrator drug-drug interaction study design. Drug Metab Dispos. 2015;43(4):490-509. 26. Grymonprez M, Carnoy L, Capieu A, et al. Impact of P-glycoprotein and CYP3A4-interacting drugs on clinical outcomes in patients with atrial fibrillation using non-vitamin K antagonist oral anticoagulants: a nationwide cohort study. Eur Heart J Cardiovasc Pharmacother. 2023;9(8):722-730. 27. Li D, Yan C, Guo M, et al. Evidence of potential pro-haemorrhagic drug interactions between CYP3A4 inhibitors and direct oral anticoagulants: analysis of the FAERS database. Br J Clin Pharmacol. 2023;89(8):2423-2429. 28. Frost CE, Song Y, Yu Z, et al. The effect of apixaban on the pharmacokinetics of digoxin and atenolol in healthy subjects. Clin Pharmacol. 2017;9:19-28. 29. Shi J, Wu T, Wu S, et al. Effect of genotype on the pharmacokinetics and bleeding events of direct oral anticoagulants: a systematic review and meta-analysis. J Clin Pharmacol. 2023;63(3):277-287. 30. Raymond J, Imbert L, Cousin T, et al. Pharmacogenetics of direct oral anticoagulants: a systematic review. J Pers Med. 2021;11(1):37. 31. Laizure SC, Parker RB, Herring VL, Hu ZY. Identification of carboxylesterase-dependent dabigatran etexilate hydrolysis. Drug Metab Dispos. 2014;42(2):201-206. 32. Laizure SC, Chen F, Farrar J, et al. Carboxylesterase-2 plays a critical role in dabigatran etexilate active metabolite formation. Drug Metab Pharmacokinet. 2022;47:100479. 33. Blech S, Ebner T, Ludwig-Schwellinger E, et al. The metabolism and disposition of the oral direct thrombin inhibitor, dabigatran, in humans. Drug Metab Dispos. 2008;36(2): 386-399. 34. Ebner T, Wagner K, Wienen W. Dabigatran acylglucuronide, the major human metabolite of dabigatran: in vitro formation, stability, and pharmacological activity. Drug Metab Dispos. 2010;38(9):1567-1575. 35. Shi J, Wang X, Nguyen JH, et al. Dabigatran etexilate activation is affected by the CES1 genetic polymorphism G143E (rs71647871) and gender. Biochem Pharmacol. 2016;119:76-84. 36. Merali Z, Ross S, Paré G. The pharmacogenetics of carboxylesterases: CES1 and CES2 genetic variants and their clinical effect. Drug Metabol Drug Interact. 2014;29(3):143-151. 37. Ji Q, Zhang C, Xu Q, et al. The impact of ABCB1 and CES1 polymorphisms on dabigatran pharmacokinetics and pharmacodynamics in patients with atrial fibrillation. Br J Clin Pharmacol. 2021;87(5):2247-2255. 38. Härtter S, Sennewald R, Nehmiz G, Reilly P. Oral bioavailability of dabigatran etexilate (Pradaxa) after co-medication with verapamil in healthy subjects. Br J Clin Pharmacol. 2013;75(4):1053-1062. 39. FDA Full Prescribing Information: Pradaxa® (dabigatran- -etexilát), Boehringer Ingelheim, 11/2023. [Internet]. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/ label/2024/022512s047lbl.pdf. 40. Rohr BS, Foerster KI, Blank A, et al. Perpetrator Characteristics of Azole Antifungal Drugs on Three Oral Factor Xa Inhibitors Administered as a Microdosed Cocktail. Clin Pharmacokinet. 2022;61(1):97-109. 41. BI Trial No. 1160.101 Synopsis. Boehringer Ingelheim, report date 29 October 2009. [Internet]. Available from: http:// trials.boehringer-ingelheim.com/content/dam/internet/opu/ clinicaltrial/com_EN/results/1160/1160.101_U09-1350-01.pdf. 42. Kosloski M, Bow M, Kikuchi R, et al. Translation of In Vitro Transport Inhibition Studies to Clinical Drug-Drug Interactions for Glecaprevir and Pibrentasvir. J Pharmacol Exp Ther. 2019;370(2):278-287. 43. SPC ČR: Pradaxa® (dabigatran etexilát), Boehringer Ingelheim, 11/2024. [Internet]. Available from: https://www. ema.europa.eu/documents/product-information/pradaxa- -epar-product-information_cs.pdf. 44. Testa S, Prandoni P, Paoletti O, et al. Direct oral anticoagulant plasma levels‘ striking increase in severe COVID-19 respiratory syndrome patients treated with antiviral agents: The Cremona experience. J Thromb Haemost. 2020;18(6): 1320-1323. 45. Delavenne X, Ollier E, Basset T, et al. A semi-mechanistic absorption model to evaluate drug-drug interaction with dabigatran: application with clarithromycin. Br J Clin Pharmacol. 2013;76(1):107-113. 46. Härtter S, Sennewald R, Schepers C, et al. Pharmacokinetic and pharmacodynamic effects of comedication of clopidogrel and dabigatran etexilate in healthy male volunteers. Eur J Clin Pharmacol. 2013;69(3):327-339. 47. Kumar P, Gordon L, Brooks KM, et al. Differential Influence of the Antiretroviral Pharmacokinetic Enhancers Ritonavir and Cobicistat on Intestinal P-Glycoprotein Transport and the Pharmacokinetic/Pharmacodynamic Disposition of Dabigatran. Antimicrob Agents Chemother. 2017;61(11):e01201-e01217. 48. Brooks KM, Gordon LA, Penzak S, et al. Cobicistat, but not Ritonavir, Increases Dabigatran Exposure. Poster 409. Conf Retroviruses Opportun Infect, Seattle, WA, 13 to 16 February 2017. [Internet]. Available from: https://www.croiconference.org/wp-content/uploads/sites/2/posters/2017/409_ Brooks.pdf. 49. Cox D, Rehman M, Khan T, et al. Effects of nirmatrelvir/ritonavir on midazolam and dabigatran pharmacokinetics in healthy participants. Br J Clin Pharmacol. 2023;89(11):3352-3363. 50. Wang N, Chen L, Li N, et al. Predicted effect of ticagrelor on the pharmacokinetics of dabigatran etexilate using physiologically based pharmacokinetic modeling. Sci Rep. 2020;10(1):9717. 51. Härtter S, Koenen-Bergmann M, Sharma A, et al. Decrease in the oral bioavailability of dabigatran etexilate after co- -medication with rifampicin. Br J Clin Pharmacol. 2012;74(3): 490-500. 52. Wang Y, Chen M, Chen H, Wang F. Influence of ABCB1 Gene Polymorphism on Rivaroxaban Blood Concentration and Hemorrhagic Events in Patients With Atrial Fibrillation. Front Pharmacol. 2021;12:639854. 53. Wu T, Wu A, Li L, et al. The impact of ABCB1, CYP3A4/5 and ABCG2 gene polymorphisms on rivaroxaban trough concentrations and bleeding events in patients with non-valvular atrial fibrillation. Hum Genomics. 2023;17(1):59. 54. Villapalos-García G, Zubiaur P, Ochoa D, et al. NAT2 phenotype alters pharmacokinetics of rivaroxaban in healthy volunteers. Biomed Pharmacother. 2023;165:115058. 55. Campos-Staffico AM, Dorsch MP, Barnes GD, et al. Eight pharmacokinetic genetic variants are not associated with the risk of bleeding from direct oral anticoagulants in non-valvular atrial fibrillation patients. Front Pharmacol. 2022;13:1007113. 56. Zhao T, Li X, Chen Y, et al. Risk assessment and molecular mechanism study of drug-drug interactions between rivaroxaban and tyrosine kinase inhibitors mediated by CYP2J2/3A4 and BCRP/P-gp. Front Pharmacol. 2022;13:914842. 57. Lee E, Wu Z, Shon JC, Liu KH. Danazol Inhibits Cytochrome P450 2J2 Activity in a Substrate-independent Manner. Drug Metab Dispos. 2015;43(8):1250-1253. 58. Wang Z, Li X, Zou Y, et al. Combination of Rivaroxaban and Amiodarone Increases Bleeding in Patients With Atrial Fibrillation. Ann Pharmacother. 2024;58(8):761-770. 59. Evangelista EA, Kaspera R, Mokadam NA, et al. Activity, inhibition, and induction of cytochrome P450 2J2 in adult human primary cardiomyocytes. Drug Metab Dispos. 2013;41(12):2087-2094. 60. Leow JWH, Ang XJ, Chan ECY. Development and verification of a physiologically based pharmacokinetic model of dronedarone and its active metabolite N-desbutyldronedarone: Application to prospective simulation of complex drug-drug interaction with rivaroxaban. Br J Clin Pharmacol. 2023;89(6):1873-1890. 61. Leow JWH, Gu Y, Chan ECY. Investigating the relevance of CYP2J2 inhibition for drugs known to cause intermediate to high risk torsades de pointes. Eur J Pharm Sci. 2023;187:106475. 62. Hügl B, Morlitz M, Fischer K, Kreutz R. Clinical significance of the rivaroxaban-dronedarone interaction: insights from physiologically based pharmacokinetic modelling. Eur Heart J Open. 2023;3(1):oead004. 63. Tang LWT, Wu G, Chan ECY. Identification of Infigratinib as a Potent Reversible Inhibitor and Mechanism-Based Inactivator of CYP2J2: Nascent Evidence for a Potential In Vivo Metabolic Drug-Drug Interaction with Rivaroxaban. J Pharmacol Exp Ther. 2022;382(2):123-134. 64. Tian X, Zheng H, Zhou X, et al. The development of novel cytochrome P450 2J2 (CYP2J2) inhibitor and the underlying interaction between inhibitor and CYP2J2. J Enzyme Inhib Med Chem. 2021;36(1):737-748. 65. Mikus G, Foerster KI, Schaumaeker M, et al. Application of a microdosed cocktail of 3 oral factor Xa inhibitors to study drug-drug interactions with different perpetrator drugs. Br J Clin Pharmacol. 2020;86(8):1632-1641. 66. Hodin S, Basset T, Jacqueroux E, et al. In Vitro Comparison of the Role of P-Glycoprotein and Breast Cancer Resistance Protein on Direct Oral Anticoagulants Disposition. Eur J Drug Metab Pharmacokinet. 2018;43(2):183-191.

RkJQdWJsaXNoZXIy NDA4Mjc=