Klinická farmakologie a farmacie – 1/2025

www.klinickafarmakologie.cz / Klin Farmakol Farm. 2025;39(1):22-33 / KLINICKÁ FARMAKOLOGIE A FARMACIE 33 HLAVNÍ TÉMA Farmakokinetické lékové interakce přímo působících perorálních antikoagulancií 67. Wen HN, He QF, Xiang XQ, et al. Predicting drug-drug interactions with physiologically based pharmacokinetic/ pharmacodynamic modelling and optimal dosing of apixaban and rivaroxaban with dronedarone co-administration. Thromb Res. 2022;218:24-34. 68. Wang L, Shang K, Feng T, et al. LC-MS/MS Method Assay for Simultaneous Determination of the Apixaban and Metformin in Rat Plasma: Assessment of Pharmacokinetic Drug- -Drug Interaction Study. J Chromatogr Sci. 2023;61(6):522-529. 69. Brings A, Lehmann ML, Foerster KI, et al. Perpetrator effects of ciclosporin (P-glycoprotein inhibitor) and its combination with fluconazole (CYP3A inhibitor) on the pharmacokinetics of rivaroxaban in healthy volunteers. Br J Clin Pharmacol. 2019;85(7):1528-1537. 70. Wang Z, Chan EC. Physiologically-Based Pharmacokinetic Modeling-Guided Dose Management of Oral Anticoagulants when Initiating Nirmatrelvir/Ritonavir (Paxlovid) for COVID-19 Treatment. Clin Pharmacol Ther. 2022;112(4):803-807. 71. Nakagawa J, Kinjo T, Ajuchi N, et al. Effect of pregnane X receptor and cytochrome P450 oxidoreductase gene polymorphisms on trough concentrations of rivaroxaban and edoxaban in patients with nonvalvular atrial fibrillation. Eur J Clin Pharmacol. 2023;79(5):703-705. 72. Attelind S, Hallberg P, Wadelius M, et al. Genetic determinants of apixaban plasma levels and their relationship to bleeding and thromboembolic events. Front Genet. 2022;13:982955. 73. Ueshima S, Hira D, Fuji R, et al. Impact of ABCB1, ABCG2, and CYP3A5 polymorphisms on plasma trough concentrations of apixaban in Japanese patients with atrial fibrillation. Pharmacogenet Genomics. 2017;27(9):329-336. 74. Huppertz A, Grond-Ginsbach C, Dumschat C, et al. Unexpected excessive apixaban exposure: case report of a patient with polymorphisms of multiple apixaban elimination pathways. BMC Pharmacol Toxicol. 2019;20(1):53. 75. Wang L, Raghavan N, He K, et al. Sulfation of o-demethyl apixaban: enzyme identification and species comparison. Drug Metab Dispos. 2009;37(4):802-808. 76. Frost CE, Byon W, Song Y, et al. Effect of ketoconazole and diltiazem on the pharmacokinetics of apixaban, an oral direct factor Xa inhibitor. Br J Clin Pharmacol. 2015;79(5): 838-846. 77. Vakkalagadda B, Frost C, Byon W, et al. Effect of Rifampin on the Pharmacokinetics of Apixaban, an Oral Direct Inhibitor of Factor Xa. Am J Cardiovasc Drugs. 2016;16(2):119-127. 78. Launay M, Demartin AL, Ragey SP, et al. Severe Inflammation, Acute Kidney Injury, and Drug-Drug Interaction: Triple Penalty for Prolonged Elimination of Apixaban in Patients With Coronavirus Disease 2019: A Grand Round. Ther Drug Monit. 2021;43(4):455-458. 79. Wang L, Zhang D, Raghavan N, et al. In vitro assessment of metabolic drug-drug interaction potential of apixaban through cytochrome P450 phenotyping, inhibition, and induction studies. Drug Metab Dispos. 2010;38(3):448-458. 80. Tsuruya Y, Nakanishi T, Komori H, et al. Different Involvement of OAT in Renal Disposition of Oral Anticoagulants Rivaroxaban, Dabigatran, and Apixaban. J Pharm Sci. 2017;106(9):2524-2534. 81. Vandell AG, Lee J, Shi M, et al. An integrated pharmacokinetic/pharmacogenomic analysis of ABCB1 and SLCO1B1 polymorphisms on edoxaban exposure. Pharmacogenomics J. 2018;18(1):153-159. 82. Mendell J, Zahir H, Matsushima N, et al. Drug-drug interaction studies of cardiovascular drugs involving P-glycoprotein, an efflux transporter, on the pharmacokinetics of edoxaban, an oral factor Xa inhibitor. Am J Cardiovasc Drugs. 2013;13(5):331-342. 83. Lenard A, Hermann S, Stoll F, et al. Effect of Clarithromycin, a Strong CYP3A and P-glycoprotein Inhibitor, on the Pharmacokinetics of Edoxaban in Healthy Volunteers and the Evaluation of the Drug Interaction with Other Oral Factor Xa Inhibitors by a Microdose Cocktail Approach. Cardiovasc Drugs Ther. 2024;38(4):747-756. 84. Gouin-Thibault I, Delavenne X, Blanchard A, et al. Interindividual variability in dabigatran and rivaroxaban exposure: contribution of ABCB1 genetic polymorphisms and interaction with clarithromycin. J Thromb Haemost. 2017;15(2):273-283. 85. Garonzik S, Lim ML, Penzak SR, et al. The Effects of Clarithromycin on the Pharmacokinetics of Apixaban in Healthy Volunteers: A Single-Sequence Crossover Study. Am J Cardiovasc Drugs. 2019;19(6):561-567. 86. Zhang D, Frost CE, He K, et al. Investigating the Enteroenteric Recirculation of Apixaban, a Factor Xa Inhibitor: Administration of Activated Charcoal to Bile Duct-Cannulated Rats and Dogs Receiving an Intravenous Dose and Use of Drug Transporter Knockout Rats. Drug Metab Dispos. 2013;41(4):906-915. 87. Stangier J, Stähle H, Rathgen K, et al. Pharmacokinetics and pharmacodynamics of dabigatran etexilate, an oral direct thrombin inhibitor, with coadministration of digoxin. J Clin Pharmacol. 2012;52(2):243-250. Připravujeme do Klinické farmakologie a farmacie HLAVNÍ TÉMA – Nežádoucí účinky imunosupresivní léčby PŘEHLEDOVÉ ČLÁNKY „ Antidepresiva v léčbě mateřské deprese: léčit nebo neléčit? „ Doplňky stravy a onkologická léčba – před čím musíme pacienty varovat? „ Farmakologická léčba nejčastějších symptomů v paliativní péči KAZUISTIKA „ Farmakokinetické interakce klozapinu a olanzapinu: kazuistiky lékových změn při inhibici CYP1A2 …a spoustu dalších zajímavých témat… 20252 ▼ VYCHÁZÍ V ČERVNU

RkJQdWJsaXNoZXIy NDA4Mjc=