Klin Farmakol Farm. 2004;18(2):81-89

Neurofarmakologická podstata působení memantinu v léčbě Alzheimerovy demence

Miloš Petrovič, Miloslav Sedláček, Martin Horák, Ladislav Vyklický jr
Fyziologický ústav AVČR, Praha

Keywords: NMDA receptor, excitotoxicity, glutamate, memantin, Alzheimer dementia, ion channel blocker.

Published: December 31, 2004  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Petrovič M, Sedláček M, Horák M, Vyklický L. Neurofarmakologická podstata působení memantinu v léčbě Alzheimerovy demence. Klin Farmakol Farm. 2004;18(2):81-89.

N-metyl-D-aspartátové (NMDA) receptory patří do skupiny ionotropních glutamátových receptorů, které společně s dalším podtypem glutamátových receptorů - AMPA/kainátovým receptorem zprostředkovávají rychlý synaptický přenos na většině excitačních synapsí v centrální nervové soustavě. NMDA receptory hrají zásadní úlohu pro zajištění komplexních funkcí nervové soustavy jako celku. Jejich aktivace je nutná pro navození dlouhodobé potenciace synaptického přenosu (LTP), o níž se předpokládá, že představuje buněčný mechanizmus, který se ve specifických oblastech nervové soustavy uplatňuje na vytváření paměťových stop. Nadměrná aktivace NMDA receptorů vede k patologickým procesům, které mohou vyústit až ve specifickou formu smrti neuronů (excitotoxicita). Existují experimentální důkazy o tom, že se excitotoxicita podílí na vzniku celé řady neurodegenerativních onemocnění a že antagonisté NMDA receptorů mohou představovat terapeutický potenciál pro léčbu onemocnění vykazující jak akutní, tak chronické formy neurodegenerace včetně Alzheimerovy demence. Memantin je látkou, která akompetitivním a napěťově závislým způsobem blokuje iontové kanály NMDA receptorů a existují důkazy o tom, že zlepšuje kognitivní funkce a zpomaluje jejich zhoršování u Alzheimerovy demence. Cílem tohoto přehledu je shrnout současné poznatky o mechanizmech působení memantinu na NMDA receptorech a představy o jeho možném využití při léčbě některých klinických syndromů, s nimiž se setkáváme u neurodegenerativních chorob, především Alzheimerovy demence.

TRE NEUROPHARMACOLOGICAL BASIS OF MEMANTINE ACTION IN THE TREATMENT OF ALZHEIMER-S DISEASE

N-methyl-D-aspartate (NMDA) receptors belong to the group of ionotropic glutamate receptors and together with AMPA/kainate receptors mediate fast excitatory synaptic transmission in the brain and spinal cord and play a key role in maintaining complex functions of the central nervous system. Their activation is an important step in the induction of long term changes in the efficacy of synaptic transmission (LTP) that is considered to represent the cellular mechanism underlying memory acquisition in specific brain regions. Excessive activation of NMDA receptors results in pathological states that may lead to a specific form of neuronal cell death (excitotoxicity). Experimental evidence suggests that excitotoxicity participates in the pathogenesis of many neurodegenerative disorders of the central nervous system. Therefore, NMDA receptor antagonists may act as potential therapeutic agents in both, the acute and chronic forms of neurodegeneration. Memantine is an uncompetitive and voltage-dependent blocker of NMDA receptor channels and was shown beneficial in improving cognition and slowing the progression of Alzheimer-s disease. The aim of this review is to summarize the present knowledge on the mechanisms involved in the effects of memantine on NMDA receptors and the ideas on its use as a potential remedy in the treatment of clinical symptoms that accompany Alzheimer-s dementia.

Download citation

References

  1. Schwab RS, Poskanzer DC, England AC, Jr., Young RR. Amantadine in Parkinson's disease. Review of more than two years' experience. JAMA 1972; 222: 792-795. Go to original source... Go to PubMed...
  2. Kornhuber J, Bormann J, Retz W, Hubers M, Riederer P. Memantine displaces [3H]MK-801 at therapeutic concentrations in postmortem human frontal cortex. Eur J Pharmacol 1989; 166: 589-590. Go to original source... Go to PubMed...
  3. Bormann J. Memantine is a potent blocker of N-methyl-D-aspartate (NMDA) receptor channels. Eur J Pharmacol 1989; 166: 591-592. Go to original source... Go to PubMed...
  4. Areosa SA, Sherriff F. Memantine for dementia. Cochrane Database Syst Rev 2003: CD003154. Go to original source...
  5. Jain KK. Evaluation of memantine for neuroprotection in dementia. Expert Opin Investig Drugs 2000; 9: 1397-1406. Go to original source... Go to PubMed...
  6. Patočka J. Memantin a jeho terapeutický potenciál u degenerativních poruch CNS. Psychiatrie 2002; 6: 35-40.
  7. Winblad B, Poritis N. Memantine in severe dementia: results of the 9M-Best Study (Benefit and efficacy in severely demented patients during treatment with memantine). Int J Geriatr Psychiatry 1999; 14: 135-146. Go to original source...
  8. Dingledine R, Borges K, Bowie D, Traynelis SF. The glutamate receptor ion channels. Pharmacol Rev 1999; 51: 7-61. Go to PubMed...
  9. Choi DW, Rothman SM. The role of glutamate neurotoxicity in hypoxic-ischemic neuronal death. Annu Rev Neurosci 1990; 13: 171-182. Go to original source... Go to PubMed...
  10. Ishii T, Moriyoshi K, Sugihara H, et al. Molecular characterization of the family of the N-methyl-D-aspartate receptor subunits. J Biol Chem 1993; 268: 2836-2843. Go to original source...
  11. Moriyoshi K, Masu M, Ishii T, Shigemoto R, Mizuno N, Nakanishi S. Molecular cloning and characterization of the rat NMDA receptor. Nature 1991; 354: 31-37. Go to original source... Go to PubMed...
  12. Monyer H, Sprengel R, Schoepfer R, et al. Heteromeric NMDA receptors: molecular and functional distinction of subtypes. Science 1992; 256: 1217-1221. Go to original source... Go to PubMed...
  13. Sucher NJ, Akbarian S, Chi CL, et al. Developmental and regional expression pattern of a novel NMDA receptor-like subunit (NMDAR-L) in the rodent brain. J Neurosci 1995; 15: 6509-6520. Go to original source... Go to PubMed...
  14. Hollmann M, Boulter J, Maron C, et al. Zinc potentiates agonist-induced currents at certain splice variants of the NMDA receptor. Neuron 1993; 10: 943-954. Go to original source... Go to PubMed...
  15. Chatterton JE, Awobuluyi M, Premkumar LS, et al. Excitatory glycine receptors containing the NR3 family of NMDA receptor subunits. Nature 2002; 415: 793-798. Go to original source... Go to PubMed...
  16. McBain CJ, Mayer ML. N-methyl-D-aspartic acid receptor structure and function. Physiol Rev 1994; 74: 723-760. Go to original source... Go to PubMed...
  17. Das S, Sasaki YF, Rothe T, et al. Increased NMDA current and spine density in mice lacking the NMDA receptor subunit NR3A. Nature 1998; 393: 377-381. Go to original source... Go to PubMed...
  18. Medina I, Filippova N, Charton G, et al. Calcium-dependent inactivation of heteromeric NMDA receptor-channels expressed in human embryonic kidney cells. J Physiol 1995; 482 (Pt 3): 567-573. Go to original source... Go to PubMed...
  19. Johnson JW, Ascher P. Glycine potentiates the NMDA response in cultured mouse brain neurons. Nature 1987; 325: 529-531. Go to original source... Go to PubMed...
  20. Mayer ML, Vyklicky L, Jr., Clements J. Regulation of NMDA receptor desensitization in mouse hippocampal neurons by glycine. Nature 1989; 338: 425-427. Go to original source... Go to PubMed...
  21. Patneau DK, Mayer ML. Structure-activity relationships for amino acid transmitter candidates acting at N-methyl-D-aspartate and quisqualate receptors. J Neurosci 1990; 10: 2385-2399. Go to original source... Go to PubMed...
  22. Kleckner NW, Dingledine R. Requirement for glycine in activation of NMDA-receptors expressed in Xenopus oocytes. Science 1988; 241: 835-837. Go to original source... Go to PubMed...
  23. Clements JD, Westbrook GL. Activation kinetics reveal the number of glutamate and glycine binding sites on the N-methyl-D-aspartate receptor. Neuron 1991; 7: 605-613. Go to original source... Go to PubMed...
  24. Vyklicky L, Jr., Krusek J, Edwards C. Differences in the pore sizes of the N-methyl-D-aspartate and kainate cation channels. Neurosci Lett 1988; 89: 313-318. Go to original source... Go to PubMed...
  25. Rogawski MA. Therapeutic potential of excitatory amino acid antagonists: channel blockers and 2,3-benzodiazepines. Trends Pharmacol Sci 1993; 14: 325-331. Go to original source... Go to PubMed...
  26. Abi-Saab WM, D'Souza DC, Moghaddam B, Krystal JH. The NMDA antagonist model for schizophrenia: promise and pitfalls. Pharmacopsychiatry 1998; 31 Suppl 2: 104-109. Go to original source... Go to PubMed...
  27. Enarson MC, Hays H, Woodroffe MA. Clinical experience with oral ketamine. J Pain Symptom Manage 1999; 17: 384-386. Go to original source... Go to PubMed...
  28. Reisberg B, Doody R, Stoffler A, Schmitt F, Ferris S, Mobius HJ. Memantine in moderate-to-severe Alzheimer's disease. N Engl J Med 2003; 348: 1333-1341. Go to original source... Go to PubMed...
  29. Kornhuber J, Quack G. Cerebrospinal fluid and serum concentrations of the N-methyl-D-aspartate (NMDA) receptor antagonist memantine in man. Neurosci Lett 1995; 195: 137-139. Go to original source... Go to PubMed...
  30. Parsons CG, Danysz W, Quack G. Memantine is a clinically well tolerated N-methyl-D-aspartate (NMDA) receptor antagonist - a review of preclinical data. Neuropharmacology 1999; 38: 735-767. Go to original source... Go to PubMed...
  31. Rogawski MA, Wenk GL. The neuropharmacological basis for the use of memantine in the treatment of Alzheimer's disease. CNS Drug Rev 2003; 9: 275-308. Go to original source... Go to PubMed...
  32. Blanpied TA, Boeckman FA, Aizenman E, Johnson JW. Trapping channel block of NMDA-activated responses by amantadine and memantine. J Neurophysiol 1997; 77: 309-323. Go to original source... Go to PubMed...
  33. Chen HS, Lipton SA. Mechanism of memantine block of NMDA-activated channels in rat retinal ganglion cells: uncompetitive antagonism. J Physiol 1997; 499 (Pt 1): 27-46. Go to original source... Go to PubMed...
  34. Kashiwagi K, Masuko T, Nguyen CD, et al. Channel blockers acting at N-methyl-D-aspartate receptors: differential effects of mutations in the vestibule and ion channel pore. Mol Pharmacol 2002; 61: 533-545. Go to original source... Go to PubMed...
  35. Parsons CG, Gruner R, Rozental J, Millar J, Lodge D. Patch clamp studies on the kinetics and selectivity of N-methyl-D-aspartate receptor antagonism by memantine (1-amino-3,5-dimethyladamantan). Neuropharmacology 1993; 32: 1337-1350. Go to original source... Go to PubMed...
  36. Sobolevsky AI, Koshelev SG, Khodorov BI. Interaction of memantine and amantadine with agonist-unbound NMDA-receptor channels in acutely isolated rat hippocampal neurons. J Physiol 1998; 512 (Pt 1): 47-60. Go to original source... Go to PubMed...
  37. Bresink I, Benke TA, Collett VJ, et al. Effects of memantine on recombinant rat NMDA receptors expressed in HEK 293 cells. Br J Pharmacol 1996; 119: 195-204. Go to original source... Go to PubMed...
  38. Parsons CG, Danysz W, Bartmann A, et al. Amino-alkyl-cyclohexanes are novel uncompetitive NMDA receptor antagonists with strong voltage-dependency and fast blocking kinetics: in vitro and in vivo characterization. Neuropharmacology 1999; 38: 85-108. Go to original source... Go to PubMed...
  39. Chen HS, Wang YF, Rayudu PV, et al. Neuroprotective concentrations of the N-methyl-D-aspartate open-channel blocker memantine are effective without cytoplasmic vacuolation following post-ischemic administration and do not block maze learning or long-term potentiation. Neuroscience 1998; 86: 1121-1132. Go to original source... Go to PubMed...
  40. Sedláček M, Horák M, Petrovič M, Vyklický L. NMDA receptory a důsledky jejich farmakologického ovlivnění. Psychiatrie 2003; 7(Suppl.1): 41-45.
  41. Nowak L, Bregestovski P, Ascher P, Herbet A, Prochiantz A. Magnesium gates glutamate-activated channels in mouse central neurones. Nature 1984; 307: 462-465. Go to original source... Go to PubMed...
  42. Mealing GA, Lanthorn TH, Murray CL, Small DL, Morley P. Differences in degree of trapping of low-affinity uncompetitive N-methyl-D-aspartic acid receptor antagonists with similar kinetics of block. J Pharmacol Exp Ther 1999; 288: 204-210. Go to PubMed...
  43. Parsons CG, Quack G, Bresink I, et al. Comparison of the potency, kinetics and voltage-dependency of a series of uncompetitive NMDA receptor antagonists in vitro with anticonvulsive and motor impairment activity in vivo. Neuropharmacology 1995; 34: 1239-1258. Go to original source... Go to PubMed...
  44. Woodhull AM. Ionic blockage of sodium channels in nerve. J Gen Physiol 1973; 61: 687-708. Go to original source... Go to PubMed...
  45. Muller WE, Mutschler E, Riederer P. Noncompetitive NMDA receptor antagonists with fast open-channel blocking kinetics and strong voltage-dependency as potential therapeutic agents for Alzheimer's dementia. Pharmacopsychiatry 1995; 28: 113-124. Go to original source... Go to PubMed...
  46. Subramaniam S, Donevan SD, Rogawski MA. Hydrophobic interactions of n-alkyl diamines with the N-methyl-D-aspartate receptor: voltage-dependent and -independent blocking sites. Mol Pharmacol 1994; 45: 117-124.
  47. Ottersen OP, Zhang N, Walberg F. Metabolic compartmentation of glutamate and glutamine: morphological evidence obtained by quantitative immunocytochemistry in rat cerebellum. Neuroscience 1992; 46: 519-534. Go to original source... Go to PubMed...
  48. Ottersen OP, Laake JH, Reichelt W, Haug FM, Torp R. Ischemic disruption of glutamate homeostasis in brain: quantitative immunocytochemical analyses. J Chem Neuroanat 1996; 12: 1-14. Go to original source... Go to PubMed...
  49. Clements JD, Lester RA, Tong G, Jahr CE, Westbrook GL. The time course of glutamate in the synaptic cleft. Science 1992; 258: 1498-1501. Go to original source... Go to PubMed...
  50. Diamond JS, Jahr CE. Transporters buffer synaptically released glutamate on a submillisecond time scale. J Neurosci 1997; 17: 4672-4687. Go to original source... Go to PubMed...
  51. Zerangue N, Kavanaugh MP. Flux coupling in a neuronal glutamate transporter. Nature 1996; 383: 634-637. Go to original source... Go to PubMed...
  52. Levy LM, Warr O, Attwell D. Stoichiometry of the glial glutamate transporter GLT-1 expressed inducibly in a Chinese hamster ovary cell line selected for low endogenous Na+-dependent glutamate uptake. J Neurosci 1998; 18: 9620-9628. Go to original source... Go to PubMed...
  53. Danbolt NC. Glutamate uptake. Prog Neurobiol 2001; 65: 1-105. Go to original source... Go to PubMed...
  54. Bliss TV, Collingridge GL. A synaptic model of memory: long-term potentiation in the hippocampus. Nature 1993; 361: 31-39. Go to original source... Go to PubMed...
  55. Maragos WF, Greenamyre JT, Penney J, John B., Young AB. Glutamate dysfunction in Alzheimer's disease: an hypothesis. Trends in Neurosciences 1987; 10: 65-68. Go to original source...
  56. Alvarez XA, Miguel-Hidalgo JJ, Fernandez-Novoa L, Cacabelos R. Intrahippocampal injections of the beta-amyloid 1-28 fragment induces behavioral deficits in rats. Methods And Findings In Experimental And Clinical Pharmacology 1997; 19: 471-479. Go to PubMed...
  57. Ashall F, Goate AM. Role of the beta-amyloid precursor protein in Alzheimer's disease. Trends Biochem Sci 1994; 19: 42-46. Go to original source... Go to PubMed...
  58. Lee HG, Zhu X, Ghanbari HA, et al. Differential regulation of glutamate receptors in Alzheimer's disease. Neurosignals 2002; 11: 282-292. Go to original source... Go to PubMed...
  59. Cacabelos R, Takeda M, Winblad B. The glutamatergic system and neurodegeneration in dementia: preventive strategies in Alzheimer's disease. Int J Geriatr Psychiatry 1999; 14: 3-47. Go to original source...
  60. Danysz W, Parsons CG, Mobius H, Stoffler A, Quack G. Neuroprotective and symptomatological action of memantine relevant for Alzheimer's disease - a unified glutamatergic hypothesis on the mechanism of action. Neurotoxicity Research 2000; 2: 85-97. Go to original source... Go to PubMed...
  61. Koh JY, Yang LL, Cotman CW. Beta-amyloid protein increases the vulnerability of cultured cortical neurons to excitotoxic damage. Brain Res 1990; 533: 315-320. Go to original source... Go to PubMed...
  62. Brorson JR, Bindokas VP, Iwama T, Marcuccilli CJ, Chisholm JC, Miller RJ. The Ca2+ influx induced by beta-amyloid peptide 25-35 in cultured hippocampal neurons results from network excitation. J Neurobiol 1995; 26: 325-338. Go to original source... Go to PubMed...
  63. Harkany T, Abraham I, Timmerman W, et al. beta-amyloid neurotoxicity is mediated by a glutamate-triggered excitotoxic cascade in rat nucleus basalis. Eur J Neurosci 2000; 12: 2735-2745. Go to original source... Go to PubMed...
  64. Arias C, Arrieta I, Tapia R. beta-Amyloid peptide fragment 25-35 potentiates the calcium-dependent release of excitatory amino acids from depolarized hippocampal slices. J Neurosci Res 1995; 41: 561-566. Go to original source... Go to PubMed...
  65. Harris ME, Wang Y, Pedigo NW, Jr., Hensley K, Butterfield DA, Carney JM. Amyloid beta peptide (25-35) inhibits Na+-dependent glutamate uptake in rat hippocampal astrocyte cultures. J Neurochem 1996; 67: 277-286. Go to original source... Go to PubMed...
  66. Li S, Mallory M, Alford M, Tanaka S, Masliah E. Glutamate transporter alterations in Alzheimer disease are possibly associated with abnormal APP expression. J Neuropathol Exp Neurol 1997; 56: 901-911. Go to original source... Go to PubMed...
  67. Masliah E, Mallory M, Alford M, Tanaka S, Hansen LA. Caspase dependent DNA fragmentation might be associated with excitotoxicity in Alzheimer disease. J Neuropathol Exp Neurol 1998; 57: 1041-1052. Go to original source... Go to PubMed...
  68. Noda M, Nakanishi H, Akaike N. Glutamate release from microglia via glutamate transporter is enhanced by amyloid-beta peptide. Neuroscience 1999; 92: 1465-1474. Go to original source... Go to PubMed...
  69. Wu J, Anwyl R, Rowan MJ. beta-Amyloid selectively augments NMDA receptor-mediated synaptic transmission in rat hippocampus. Neuroreport 1995; 6: 2409-2413. Go to original source... Go to PubMed...
  70. Couratier P, Sindou P, Tabaraud F, Diop AG, Spencer PS, Hugon J. Modulation of tau neuronal expression induced by NMDA, non-NMDA and metabotropic glutamate receptor agonists. Neurodegeneration 1995; 4: 33-41. Go to original source... Go to PubMed...
  71. Mandelkow EM, Mandelkow E. Tau in Alzheimer's disease. Trends Cell Biol 1998; 8: 425-427. Go to original source... Go to PubMed...
  72. Couratier P, Lesort M, Sindou P, Esclaire F, Yardin C, Hugon J. Modifications of neuronal phosphorylated tau immunoreactivity induced by NMDA toxicity. Mol Chem Neuropathol 1996; 27: 259-273. Go to original source... Go to PubMed...
  73. Butterfield DA, Pocernich CB. The glutamatergic system and Alzheimer's disease: therapeutic implications. CNS Drugs 2003; 17: 641-652. Go to original source... Go to PubMed...
  74. Erdo SL, Schafer M. Memantine is highly potent in protecting cortical cultures against excitotoxic cell death evoked by glutamate and N-methyl-D-aspartate. Eur J Pharmacol 1991; 198: 215-217. Go to original source... Go to PubMed...
  75. Krieglstein J. Mechanisms of neuroprotective drug actions. Clin Neurosci 1997; 4: 184-193. Go to PubMed...
  76. Krieglstein J, Lippert K, Poch G. Apparent independent action of nimodipine and glutamate antagonists to protect cultured neurons against glutamate-induced damage. Neuropharmacology 1996; 35: 1737-1742. Go to original source... Go to PubMed...
  77. Kornhuber J, Weller M, Schoppmeyer K, Riederer P. Amantadine and memantine are NMDA receptor antagonists with neuroprotective properties. J Neural Transm Suppl 1994; 43: 91-104.
  78. Wenk GL, Danysz W, Mobley SL. Investigations of neurotoxicity and neuroprotection within the nucleus basalis of the rat. Brain Res 1994; 655: 7-11. Go to original source... Go to PubMed...
  79. Wenk GL, Danysz W, Mobley SL. MK-801, memantine and amantadine show neuroprotective activity in the nucleus basalis magnocellularis. Eur J Pharmacol 1995; 293: 267-270. Go to original source... Go to PubMed...
  80. Wenk GL, Zajaczkowski W, Danysz W. Neuroprotection of acetylcholinergic basal forebrain neurons by memantine and neurokinin B. Behav Brain Res 1997; 83: 129-133. Go to original source... Go to PubMed...
  81. Miguel-Hidalgo JJ, Alvarez XA, Cacabelos R, Quack G. Neuroprotection by memantine against neurodegeneration induced by beta-amyloid(1-40). Brain Res 2002; 958: 210-221. Go to original source... Go to PubMed...
  82. Ditzler K. Efficacy and tolerability of memantine in patients with dementia syndrome. A double-blind, placebo controlled trial. Arzneimittelforschung 1991; 41: 773-780.
  83. Ruther E, Glaser A, Bleich S, Degner D, Wiltfang J. A prospective PMS study to validate the sensitivity for change of the D- scale in advanced stages of dementia using the NMDA-antagonist memantine. Pharmacopsychiatry 2000; 33: 103-108. Go to original source... Go to PubMed...
  84. Tariot PN, Farlow MR, Grossberg GT, Graham SM, McDonald S, Gergel I. Memantine treatment in patients with moderate to severe Alzheimer disease already receiving donepezil: a randomized controlled trial. JAMA 2004; 291: 317-324. Go to original source... Go to PubMed...




Clinical Pharmacology and Pharmacy

Madam, Sir,
please be aware that the website on which you intend to enter, not the general public because it contains technical information about medicines, including advertisements relating to medicinal products. This information and communication professionals are solely under §2 of the Act n.40/1995 Coll. Is active persons authorized to prescribe or supply (hereinafter expert).
Take note that if you are not an expert, you run the risk of danger to their health or the health of other persons, if you the obtained information improperly understood or interpreted, and especially advertising which may be part of this site, or whether you used it for self-diagnosis or medical treatment, whether in relation to each other in person or in relation to others.

I declare:

  1. that I have met the above instruction
  2. I'm an expert within the meaning of the Act n.40/1995 Coll. the regulation of advertising, as amended, and I am aware of the risks that would be a person other than the expert input to these sites exhibited


No

Yes

If your statement is not true, please be aware
that brings the risk of danger to their health or the health of others.